
© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 1 of 12

EIOPA Validations Syntax

Ver 2.8.0

The document contains non-binding information, and is subject to substantial

further changes

LAST UPDATE: 17/03/2023

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 2 of 12

INDEX

I Modification history .. 3

II Introduction .. 4

III Syntax use cases ... 4

III.1 Generic mathematical and logical operators ... 4

III.2 Syntax specific for EIOPA validations .. 5

III.2.1 Data type constrains ... 5

III.2.2 Existence checks (previously ‘Empty‘) ... 6

III.2.3 Dictionary element reference .. 7

III.2.4 ‘Matches‘/‘not matches‘ (previously ‘Like / not like’) 8

III.2.5 ‘Allowed combinations of values‘ ... 9

III.2.6 Conditional validations ... 9

III.2.7 Scope (previously ‘NNN‘ & ‘cNNN‘) ...10

III.2.8 Exclusion of dictionary element (previously ‘Member is not allowed’)11

III.2.9 Sum and maximum / minimum operators ...11

III.2.10 Equivalence checks ..11

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 3 of 12

I Modification history

Date Main change description

30/09/2015 First version of the document

15/07/2016 ‘rNNN‘ & ‘cNNN‘ syntax added to the document. Replacing syntax ‘for

every’ with ‘not(isfallback)’

1/06/2017 ‘Reported’ added to syntax

1/06/2017 ‘Allowed combinations of values’

1/06/2017 ‘Unit of a monetary concept for (…) does not match value of (…)’

1/11/2018 BV4 example for ‘Like‘/‘not like‘ was replaced with BV6 validation (due to

the fact that BV4 validation was removed from the 2.3.0 Hotfix scope)

3/06/2019 Updates to examples due to improvements in business and technical

validations

15/07/2020 Updates to examples due to improvements in business and technical

validations

15/07/2021 Updates to examples to make it more general

31/01/2023 Updates explaining new outputs and improved syntax (V2).

Reorganisation of the file due to introduction of the new syntax.

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 4 of 12

II Introduction

Aim of this document is to describe syntax, wording and patterns used in definition of

business and technical rules for EIOPA XBRL taxonomies. The examples provided are

based on Solvency II validations.

Validations are presented using simplified expression syntax, aimed for business users,

as well as more technical XBRL oriented one. Below document follows the prior structure.

III Syntax use cases

III.1 Generic mathematical and logical operators

Below table describes basic operators used in business rules

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

= Equation

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

!= Not equal (other than) (previously it was

referenced as <>)

Sum() Calculates summation of components

inside the parenthesis

Max() Finds maximum value from the

components inside the parenthesis

Min() Finds minimum value from the components

inside the parenthesis

Abs() Returns absolute value from the

components inside the parenthesis

And Both components must be true

Or At least one component must be true

Exp() Calculates the exponential function. It

requires the expression, numerator and

denominator inside parentheses separated

by a comma

Count() Counts the occurrence of a given fact

NOTE:

Although possible to implement, no validation currently uses absolute value operators.

Furthermore, the use of the divide operator is avoided due to the risk of a divide-by-zero

error. Instead, it was decided to reverse the equations to represent the described

relationships by multiplication.

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 5 of 12

Some of the operators can be implemented with “i” prefix, indicating that the relation

should be calculated using the interval arithmetic tolerance mechanism1.

III.2 Syntax specific for EIOPA validations

Some syntax used in validations is specific for EIOPA project. Below particular case with

explanation and examples are provided.

III.2.1 Data type constrains

Data type constrain is used to identify applicable patterns for a given reportable fact. In

majority of the cases it refers to one of the ISO codification standards, like ISO 4217 for

currencies or ISO 8601 for dates.

1 The interval arithmetic is described in XBRL Taxonomy documentation, section VII.3.6.7

Evaluation of validation rules and interval arithmetic.

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 6 of 12

Examples:

Validation Explanation

matches({t: S.23.04.01.01, c:

C0110}, "yyyy-mm-dd pattern

for date as per ISO 8601")

Value in column C0110 must be in line with ISO 8601

format (yyyy-mm-dd)

matches({t: S.23.04.01.04, c:

C0470}, "one of options as per

ISO 4217")

Value in column C0470 must be in line with ISO 4217

format (3 letter code for currencies)

matches({t: S.11.01.01.01, c:

C0230}, "one of options as per

ISO 3166-1, ‘XA’, ‘EU’ or ‘AA’")

Value in column C0040 must be in line with ISO

3166-1 alpha-2 code format (2 letter code for

country name), but additionally possible values are

also “XA”, “EU” and “AA” which do not belong to the

standard

matches({t: S.01.02.01.01, r:

R0050, c: C0010}, "one of

options as per ISO 3166-1")

Value provided in row R0050 column C0010 must be

in line with ISO 3166-1 alpha-2 code format (2 letter

code for country name)

matches({t: S.01.02.01.01, r:

R0070, c: C0010}, “one of

options as per ISO 639-1”)

Value in row R0070, column C0010 must be in line

with ISO 639-1 alpha-2 code format (2 letter code

for language),

NOTE:

This type of validation is represented in a taxonomy as a reference to list of domain

members defined in the dictionary or by data type as an XML attribute, hence technically

no XBRL formulas are generated for data type constrains.

III.2.2 Existence checks (previously ‘Empty‘)

This type of validation checks whether particular reportable element was or was not

reported. The operator used in these rules is "isNull" to indicate that the filed cannot be

reported, and the prefix ‘not’ for checking the reverse. Another way to enforce reporting

of a certain datapoint is use of count() function. In such case it is assumed that filer will

have to provide a certain number of facts, corresponding to the number expressed in the

equation.

Examples:

Validation Explanation

not(isNull({t:

E.04.01.16.01, r:

ER0010}))

Cell er0010 reported in E.04.01.16.01, must not be

empty

if not(isNull({t:

S.08.01.01.01, c: C0240, z:

Z0001})) then not(isNull({t:

S.08.01.01.02, c: C0380, z:

Z0001})) else true()

If column C0240 is reported, then column C0380 should

also be reported

not(isNull({t:

S.06.02.01.02, c: C0292, z:

Z0001})); Where:

matches({t:

SE.06.02.18.02, z: Z0001,

c: C0290, seq: False, id: v2,

f: solvency, fv: solvency2},

"^..4.$")

Column c0292 has to be reported for CIC codes “##4#”

(Investment funds Collective Investment Undertakings)

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 7 of 12

(not(isNull({t:

S.12.01.02.01, r: R0030, c:

C0190})) and not(isNull({t:

S.12.01.02.01, r: R0100, c:

C0190}))) or (isNull({t:

S.12.01.02.01, r: R0030, c:

C0190}) and isNull({t:

S.12.01.02.01, r: R0100, c:

C0190}))

Rows R0030 and R0100 for column C0190 in table

S.12.01.02.01 should be either simultaneously reported

or left empty

if ({t: S.26.05.04.05, r:

R0010, c: C0010, z: Z0001}

= [s2c_AP:x33] and

not(isNull({t:

S.05.01.01.01, r: R0200, c:

C0100, z: Z0001}))) then

not(isNull({t:

S.26.05.04.01, r: R0160, c:

C0060, z: Z0001})) and

not(isNull({t:

S.26.05.04.01, r: R0160, c:

C0070, z: Z0001})) and

not(isNull({t:

S.26.05.04.01, r: R0160, c:

C0090, z: Z0001})) else

true()

If ‘Simplifications used‘ is reported row R0010 column

C0010 and R0200, C0100 for S.05.01.01.01 table is

reported, then S.26.05.04.01 columns C0060, C0070

and C0090 for rows R0160 should be reported

if (not(isNull({t:

S.06.03.01.01, c: C0060, z:

Z0001}))) then

not(isNull({t:

S.06.02.01.02, c: C0290, z:

Z0001})) else true()

If column c0600 is not empty, then column c0290 must

also be reported

count({t: S.01.01.11.01, r:

R0010; R0253; R0254;

R0490; R0950; R0960;

R0980, c: C0010, dv:

emptySequence(), seq:

True, id: v0, f: solvency, fv:

solvency2}) = 7

There should be 7 facts reported for table S.01.01.11.01

rows R0010, R0253, R0254, R0490, R0950, R0960,

R0980

III.2.3 Dictionary element reference

Since some of the reported facts are components of the dictionary (e.g. s2c_SE:x10 which

is an domain member from the SE domain and its label is Undertakings pursuing both life

and non-life insurance activity), they are also used in a number of business rules. In the

expressions, these cases are identified by putting relevant dictionary component within the

square brackets. Dictionary references can be used as a part of the validation check (i.e.,

by requiring or prohibiting certain element to be reported), or as a part of additional

constrain casted on specific variable (e.g., filter).

Examples:

Validation Explanation

if ({t: S.01.02.04.01, r:

R0190, c: C0010} =

[s2c_AP:x10]) then {t:

If value reported in cell r0190,c0010 in table S.01.02 is

s2c_AP:x10 (No use of transitional measure on the risk-

free interest rate), then Impact of transitional on

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 8 of 12

S.22.01.04.01, r: R0060, c:

C0050} = 0 else true()

interest rate for Tier 1 reported (cell r0370,c0010) in

table S.22.01.04.01 must equal 0

if ({t: S.14.01.01.01, c:

C0030} = [s2c_LB:x10] or

{t: S.14.01.01.01, c: C0030}

= [s2c_LB:x11]) then

isNull({t: S.14.01.01.05, c:

C0060}) and isNull({t:

S.14.01.01.05, c: C0061})

and isNull({t: S.14.01.01.05,

c: C0062}) and isNull({t:

S.14.01.01.05, c: C0063})

else true()

If a value reported on column C0030 (Total amount of

Written premiums: of which written directly by the

insurance undertaking) is s2c_LB:x10 (Annuities

stemming from non-life insurance contracts and relating

to health insurance obligations) or s2c_LB:x11

(Annuities stemming from non-life insurance contracts

and relating to insurance obligations other than health

insurance obligations), then S.14.01.01.01 C0030 (Line

of Business), S.14.01.01.05 C0061 (of which written

directly by the insurance undertaking), C0062 (of which

written via credit institutions), C0063 (of which written

via other insurance distributors) should be empty

{ m: [s2md_met:ei1904]} !=

[s2c_CU:x7]

Value s2c_CU:x7 (Temporary identifier for currency)

should not be reported for metric ei1904 (Metric: Swap

delivered currency (for buyer))

dim({d:

[s2c_dim:LR]},[s2c_dim:LR])

!= [s2c_GA:x112]

The item "Temporary identifier for country 1" must not

be reported for dimension LR regardless of the table

{t: S.17.01.01.01, r: R0160,

c: C0090} = {t:

S.19.01.01.04, r: R0260, c:

C0360, filter: [s2c_dim:BL] =

[s2c_LB:x34] and

[s2c_dim:OC] =

[s2c_CU:x0]}

Value reported in row R0160 (Gross - Total) for column

C0090 (General liability insurance) reported in table

S.17.01.01.01, should be equal to value reported in

S.19.01.01.04 in row R0260 (Total) column C0360

(Year end (discounted data) ‘General liability insurance

[direct business and accepted proportional reinsurance]’

for line of business

{t: S.06.02.01.01, c: C0060,

z: Z0001, filter:

not(isNull([s2c_dim:NF]))} =

[s2c_PU:x96] or {t:

S.06.02.01.01, c: C0060, z:

Z0001, filter:

not(isNull([s2c_dim:NF]))} =

[s2c_PU:x57]

Column C0060 should be reported with value PU:x96 or

PU:x57, in addition the Fund Number code must be

provided. The validation assumes “Fund/Matching

portfolio Number” value to be provided in S.06.02.01.01

to execute

III.2.4 ‘Matches‘/‘not matches‘ (previously ‘Like / not like’)

This operator provides mechanism to distinguish pattern or a given sign from the reported

element. It is used primarily to filter out particular rows from open tables. In case of some

validations using patterns they follow regular expression syntax and include ‘^’ identifying

beginning of a text and ‘$’ identifying the end of a text.

Examples:

Validation Explanation

if matches(dim({d:

[s2c_dim:CA]},[s2c_dim:CA]),

"^LEI/[A-Z0-9]{18}[0-9]{2}$")

and not(matches(dim({d:

[s2c_dim:CA]},[s2c_dim:CA]),

"^LEI/[A-Z0-9]{18}(01|00)$"))

then

leiChecksum(substring(dim({d:

[s2c_dim:CA]},[s2c_dim:CA]),5))

If value reported for a Code Broker (s2c_dim:CA)

starts with LEI followed by “/” followed later by ISIN

code pattern, and it is not a test code with 01 or 00

final designs, then it should have correct checksum

otherwise the Code Broker should be a Specific

Code starting with “SC/”

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 9 of 12

else matches(dim({d:

[s2c_dim:CA]},[s2c_dim:CA]),

"^SC/.*") or isNull(dim({d:

[s2c_dim:CA]},[s2c_dim:CA])) or

matches(dim({d:

[s2c_dim:CA]},[s2c_dim:CA]),[…]

matches({ m:

[s2md_met:si1554]}, "^....$")

Metric si1554 (Metric: String|TS/CIC code) should

follow 4 sign pattern

if matches({ m:

[s2md_met:si1559]}, "^LEI/[A-

Z0-9]{20}$") and not(matches({

m: [s2md_met:si1559]},

"^LEI/[A-Z0-9]{18}(01|00)$"))

then leiChecksum(substring({ m:

[s2md_met:si1559]}, 5)) else

matches({ m:

[s2md_met:si1559]}, "^None$")

Value reported for metric si1559 must be in line

with LEI which is 20-character alphanumeric code,

preceded by “LEI/”. In addition, the code should

have correct checksum. The only other accepted

value is “None”.

III.2.5 ‘Allowed combinations of values‘

A specific example of the use of the matches function is the check of possible combinations

of integers.

Validation Explanation

matches({ m: [s2md_met:si2468], seq: False, id:

v0}, "^((1$)|(9$)){1}$")

The only values that can be

reported for si2468 are “1” or “9”

matches({ m: [s2md_met:si2527]},

"^(((1$|1,){0,1}(2$|2,){0,1}(3$|3,){0,1}(4$|4,)

{0,1}$")

The only values that can be

reported for si2527 are "1" or "2"

or "3" or "4" or "1,2" or "1,3" or

"1,4" or "2,3" or "2,4" or "3,4" or

"1,2,3" or "1,2,4" or "1,3,4" or

"2,3,4" or "1,2,3,4"

III.2.6 Conditional validations

These validations are represented by If x then y notation. Often, logical test (x) and the

result if true (y) are complex expressions and are using other operators described in this

document. Validation check is executed whether the if statement is met, in such case two

possible outcomes are expected. Note however, that in case the if statement has been

failed, validation will proceed with the last (i.e., else) part, which is usually set to true. As

the result, report can be submitted without the fear of blocking validation being triggered

for unforeseen scenario.

Examples:

Validation Explanation

if ({t: S.26.01.04.03, r: R0020, c: C0010, z:

Z0001} = [s2c_AP:x34] and isNull({t:

S.02.01.01.01, r: R0850, c: C0010})) then {t:

S.26.01.04.02, r: R0110, c: C0060, z: Z0001} =

imax(0, ({t: S.26.01.04.01, r: R0110, c: C0020,

z: Z0001} - {t: S.26.01.04.01, r: R0110, c:

If value reported in table S.26.01

cell r0020,c0010 is s2c_AP:x34

(Simplifications not used) and cell

reported in S.02.01 r0850,c0010 is

empty then, for table S.26.01, value

in cell r0110,c0060 must be equal

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 10 of 12

C0030, z: Z0001}) - ({t: S.26.01.04.01, r:

R0110, c: C0040, z: Z0001} - {t: S.26.01.04.01,

r: R0110, c: C0050, z: Z0001})) else true()

to the maximum value of either 0 or

result of subtracting r0110,c0030;

r0110,c0040 and r0110,c0050 from

r0110,c0020

if (matches(dim({d:

[s2c_dim:IW]},[s2c_dim:IW]) , "^CAU/.*"))

then (matches(dim({d:

[s2c_dim:IW]},[s2c_dim:IW]),

"^(CAU/MAL$)|(CAU/INDEX/.+)|(^CAU/INST/.+)

|(CAU/ISIN/[A-Z0-9]{11}\d\+[A-Z]{3}$)")) else

true()

If value provided for typed

dimension IW follow pattern

starting with “CAU/” followed by

none or infinite number of any

characters, then it should start with

"CAU/INST/" followed by any

number of characters or "CAU/MAL"

or "CAU/INDEX/" followed by at

least one character or "CAU/INST/"

followed by at least one character,

or “CAU/ISIN/” followed by 20

alphanumerical ISIN code, with the

last character being a digit, followed

by three capital letters. In case

value reported does not start with

“CAU/” pattern, the validation will

execute the else statement and

pass as TRUE

III.2.7 Scope (previously ‘NNN‘ & ‘cNNN‘)

The scope column is used to indicate to which rows and columns the validation is applicable.

The field provides information for each variable referred in the validation expression.

Examples:

Validation Explanation

scope({t: SR.22.03.01.01,

r:R0070;R0080;R0090;R0100;R0110,

f: solvency, fv: solvency2}) {t:

SR.22.03.01.01, c: C0010, z: Z0001}

>= 0

Value in cell c0010 rows R0070, R0080, R0090,

R0100 and R0110 in table SR.22.03.01.01,

should be positive or zero

scope({t: S.17.03.01.01, c:C0100, f:

solvency, fv: solvency2},{t:

S.17.03.01.02, c:C0100, f: solvency,

fv: solvency2},{t: S.17.01.01.01,

c:C0100, f: solvency, fv: solvency2})

{t: S.17.03.01.01, r: R0010} + {t:

S.17.03.01.01, r: R0020} + {t:

S.17.03.01.01, r: R0030} + sum({t:

S.17.03.01.02, r: R0100, z: Z0001,

filter: [s2c_dim:TB] =

[s2c_LB:x28]}) <= {t:

S.17.01.01.01, r: R0020} + {t:

S.17.01.01.01, r: R0070} + {t:

S.17.01.01.01, r: R0170}

Sum of column C0100 rows R0010, R0020,

R0030 for table S.17.03.01.01 and column

C0100 row R0100 for table S.17.03.01.02 for

s2c_LB:x28 (Direct Business) is less than or

equal to sum column C0100 of rows R0020,

R0070 and R0170 for S.17.01.01.01

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 11 of 12

III.2.8 Exclusion of dictionary element (previously ‘Member is not allowed’)

This expression is used to indicate that a specific dictionary element cannot be used. This

check is defined indifferently of the tables and aims to put the restriction on the entire

report.

Validation Explanation

{ m: [s2md_met:ei1904]} !=

[s2c_CU:x7]

Value s2c_CU:x7 (Temporary identifier for currency)

should not be reported for metric ei1904 (Metric:

Swap delivered currency (for buyer))

dim({d:

[s2c_dim:LR]},[s2c_dim:LR])

!= [s2c_GA:x112]

The item "Temporary identifier for country 1" must

not be reported for dimension LR regardless of the

table

III.2.9 Sum and maximum / minimum operators

Validation Explanation

{t: SR.26.01.04.02, r: R0483,

c: C0060, z: Z0001} =

imax(0, ({t: SR.26.01.04.01,

r: R0483, c: C0020, z: Z0001}

- {t: SR.26.01.04.01, r:

R0483, c: C0030, z: Z0001}) -

({t: SR.26.01.04.01, r: R0483,

c: C0040, z: Z0001} - {t:

SR.26.01.04.01, r: R0483, c:

C0050, z: Z0001}))

Value reported in SR.26.01.04.02 row R0483 column

C0060 must be equal to the maximum value of the

two figures, zero and the difference between the

result of subtraction of C0030 from C0020 and C0050

from C0040 reported for row R083 in SR.26.01.04.01

table

sum({t: S.14.01.01.05, c:

C0075}) = {t: S.12.01.01.01,

r: R0270, c: C0160}

Sum of values reported in S.14.01.01.05 column

C0075 must be equal to value reported in

S.12.01.01.01 row R0270 column C0160

III.2.10 Equivalence checks

Due to the data centricity of the model, equivalence checks are created between different

datapoints. Creating a rule that checks the correspondence of reported values for the same

datapoints misses the point and as such should be avoided for the sake of performance.

Validation Explanation

scope({t: S.23.02.01.01,

c:C0040, f: solvency, fv:

solvency2})

{t: S.23.02.01.01, r: R0200,

z: Z0001} = {t:

S.23.02.01.01, r: R0120, z:

Z0001}

Value reported in table S.23.02.01.01, row R0200

must be equal to the one reported in R0120 for

column C0040 (Tier 2)

matches({t: S.06.02.07.02, c:

C0290, z: Z0001, seq: False,

id: v3, f: solvency, fv:

solvency2}, "^..8.$")

The item "issuer code" in template S.06.02 - List of

assets should be different from the item

"identification code of the third country branch" from

template S.01.02 - Basic Information - General for

assets with CIC '##8#'

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

© EIOPA –European Insurance and Occupational Pensions Authority–

 email: xbrl@eiopa.europa.eu ; Website: https://eiopa.europa.eu 12 of 12

{t: S.06.02.07.02, c: C0210,

z: Z0001} != {t:

S.01.02.07.01, r: R0050, c:

C0010}

mailto:validations@eiopa.europa.eu
https://eiopa.europa.eu/

